Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.17.516989

ABSTRACT

The never-ending emergence of SARS-CoV-2 variations of concern (VOCs) has challenged the whole world for pandemic control. In order to develop effective drugs and vaccines, one needs to efficiently simulate SARS- CoV-2 spike receptor binding domain (RBD) mutations and identify high-risk variants. We pretrain a large pro- tein language model on approximately 408 million pro- tein sequences and construct a high-throughput screen- ing for the prediction of binding affinity and antibody escape. As the first work on SARS-CoV-2 RBD mu- tation simulation, we successfully identify mutations in the RBD regions of 5 VOCs and can screen millions of potential variants in seconds. Our workflow scales to 4096 NPUs with 96.5% scalability and 493.9X speedup in mixed precision computing, while achieving a peak performance of 366.8 PFLOPS (reaching 34.9% theo- retical peak) on Pengcheng Cloudbrain-II. Our method paves the way for simulating coronavirus evolution in or- der to prepare for a future pandemic that will inevitably take place.

2.
Biomed Pharmacother ; 143: 112176, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1412768

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new variants reported in different countries have posed a serious threat to human health and social fabrics worldwide. In addition, these new variants hindered the efforts of vaccines and other therapeutic developments. In this review article, we explained the emergence of new variants of SARS-CoV-2, their transmission risk, mortality rate, and, more importantly, the impact of each new variant on the efficacy of the developed vaccines reported in different literature and findings. The literature reported that with the emergence of new variants, the efficacy of different vaccines is declined, hospitalization and the risk of reinfection is increased. The reports concluded that the emergence of a variant that entirely evades the immune response triggered by the vaccine is improbable. The emergence of new variants and reports of re-infections are creating a more distressing situation and therefore demands further investigation to formulate an effective therapeutic strategy.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/classification , COVID-19 Vaccines/pharmacology , Humans , Immunogenicity, Vaccine , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Treatment Outcome
3.
authorea preprints; 2021.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.162751885.54678505.v1

ABSTRACT

The global pandemic caused by a single-stranded RNA (ssRNA) virus known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still at its peak, with new cases being reported daily. Though the vaccinations are done on a massive scale, the frequent mutations in the viral gene and resilience of the future strains could be more problematic. Therefore, there is always a need for new compounds to be available for therapeutic studies. We carried out the present research to discover potential drug compounds against the SARS-CoV-2 main protease. A total of 16,000 drug-like small molecules from the ChemBridge database were virtually screened to obtain the top hits. As a result, 1032 hits were selected based on their docking scores. Next, these structures were prepared for molecular docking, and each small molecule was docked into the active site of the Mpro. Only those compounds with strong interactions with the active site residues and had the highest docking score were subjected to molecular dynamics (MD) simulation. The post-simulation analyses were carried out using the in-built GROMACS commands to gauge the stability, flexibility, and compactness. Principal component analysis (PCA) and hydrogen bonding were also calculated to observe trends and affinity of the drugs towards the target. Among the five top compounds, C1, C3, and C4 revealed strong interaction with the target’s active site and remained highly stable throughout the simulation. We believe the predicted compounds in this study could be potential inhibitors in the natural system and must be considered for further practice.


Subject(s)
Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL